A Runtime Switchable Multi-Phase Convolutional Neural Network for Resource-Constrained Systems

نویسندگان

چکیده

Convolutional Neural Networks (CNNs) are widely used in various systems, including resource-constrained embedded systems or IoT devices. In such it is typical to deploy compressed pruned CNNs, instead of original ones, at the cost reduced accuracy. Existing CNN pruning techniques have primarily focused on minimizing resource requirements. However, today’s increasingly dynamic both demands and availability. Thus, previous that only consider given static cases no longer efficient. this paper, we propose a novel multi-phase enables multi-objective exploration number candidates out single CNN. proposed technique, can operate versions depending which subsets weights be transformed one best matches constraint adaptively efficiently. For that, first sparsest form; then set parameters (sub-network) additionally supplemented as phase goes by. As result, network for all different phases represented by they form pareto solution over accuracy usage trade-off. work, target CPU-based inference engines most do not luxury specialized co-processor support GPUs HW accelerators. The technique has been implemented publicly available CPU engine, Darknet, its effectiveness validated with popular terms design space capability runtime switchability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Accelerating Convolutional Neural Network Systems

Convolutional Neural Networks have recently been shown to be highly effective classifiers for image and speech data. Due to the large volume of data required to build useful models, and the complexity of the models themselves, efficiency has become one of the primary concerns. This work shows that frequency domain methods can be utilised to accelerate the performance training, inference, and sl...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

Non-melanoma skin cancer diagnosis with a convolutional neural network

Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2023

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2023.3287998